MANCHESTER Physiologically Based POP-PK modelling of Strontium in the ovariectomised rat disease model of

post menopausal osteoporosis Henry Pertinez A, Marylore Chenel E Leon Aarons A

^A Centre for applied Pharmacokinetic Research, School of Pharmacy and Pharmaceutical sciences, The University of Manchester, ^B Clinical PK department,

Institut de Recherches Internationales Servier. Courbevoie Cedex

E-mail: henry.pertinez@manchester.ac.uk

1. Introduction and Objectives

The Univers of Manches

- It was first observed in the 1950s that moderate PO doses of Strontium can aid Calcium deposition in bone and clinical efficacy in this role has since been further demonstrated i.e. increased BMD and reduced vertebral and non-vertebral fracture risk in post menopausal women with osteoporosis dosed PO 2g per day with Strontium as its ranelate salt¹¹, currently marketed by Servier as PROTELOSTM
- Strontium is a bone seeking agent, one of a class of molecules sharing a high affinity for bone tissue. PK and PD of bone seeking agents is made more complex by the heterogeneity of bone tissue, i.e. the physiologically listinct cortical and trabecular bone tissue sub-types and the distinct bone surface and bone matrix sub-compartments. Distribution of Strontium into soft tissue is relatively low.
- The physiological influence and ADME of Strontium can be readily considered in comparison to that of Calcium (both group II metals in the periodic table with similar solution chemistry)
- Strontium is absorbed in the intestine via a saturable, active pathway, shared with Calcium and is cleared principally by renal excretion with minor contributions from bile excretion and direct gut secretion in the rat.
- The aim of the work described in this poster was to develop a physiologically based pharmacokinetic (PBPK) model that would be able to describe bone exposure data for Strontium in the ovariectomised (OVX) rat preclinical disease model for post menopausal osteoporosis, in a physiologically rationalised manner.

2. Model Design and Features

Lung (Q,,,, • A PBPK model for Strontium was developed incorporating elements from literature PBPK models for other bone seeking agents^[2], (KP_{LU} , V_{LU} allowing for a description of the heterogeneity of bone tissue in the structure of the model (i.e. cortical and trabecular bone compartments and bone surface and bone matrix sub-compartments) and also for a physiologically rationalized description of the (Q..... (Que Well Perfused Tissues processes of bone remodelling. (Schematic in Fig. 1) Tissue compartments other than bone are described with perfusion rate limited PBPK tissue models, i.e where: 10.... (Q___) Poorly Perfused Tissues d C_{Tissue} / dt = (Q_{Tissue} * C_{arterial}) / (V_{Tissue}) - (Q_{Tissue} * C_{Tissue}) / (V_{Tissue} * Kp_{(Tissue}) (KP_{PP} , V_{PP} , Kp values for Lung, Liver and Kidney taken from a satellite rat tissue distribution study, where Strontium was dosed to steady state. Metabolically Active • Kp values for lumped well perfused and poorly perfused tissues were calculated using the formula of Nestorov et al.^[3] Trabecular bone surface • 1st order elimination occurs from the Kidney and Liver (biliary excretion, no metabolic clearance) compartments. KP_{T-BONE} , TBRR Rone Densit TRER STRON The Cortical and Trabecular bone tissue types are treated as separate physiological compartments, each using a modified version (Bone Remodelling) Arteria of a permeability rate limited PBPK tissue model. Blood Blood Trabecular Bone Matrix Bone surface in the cortical and trabecular tissue compartments is treated as the vascular tissue sub-compartment : 1). dA_{BONE-SURF-x} / dt = (Q_{BONE-x} * C_{arterial}) - (Q_{BONE-x} * A_{BONE-SURF-x} / (V_{BONE-SURF-x} * Kp_{-BONE-SURF-x})... ... - (STRONT * x-BFR * A_{BONE-SURF-x} / V_{BONE-SURF-x}) + (x-BRR * A_{BONE-MATRIX-x} / V_{BONE-MATRIX-x}) Metabolically Active "x" is Co. Q PONE CORT Cortical bone surface (QRONE.CO • Bone matrix is treated as the extravascular tissue sub-compartment V_{S-C-BONE} , Bone Density CBRR, CBFR, STRONT (Q_{cu} 2). dA_{BONE-MATRIX-x} / dt = (STRONT * x-BFR * A_{BONE-SURF-x} / V_{BONE-SURF-x}) - (x-BRR * A_{BONE-MATRIX-x} / V_{BONE-MATRIX-x}) (Bone Remodellina) (Where "x" is Cortical or Trabecular, and STRONT is a directly of the street of the st Cortical Bone Matrix Exchange between surface and matrix sub-compartments is governed by the processes of bone remodelling i.e. bone resorption rate (BRR) and bone (re)formation rate (BFR). Equations describing these processes are given below : Liver 3). FBFR = (0.003 +0.321 *exp(-0.2*AGE) + 0.081*exp(-0.021*AGE))/24 Gut Tissue 5). T-BFR= BFR * PART C-BFR= BFR * (1-PART) Biliary clearance (KP, , V, , Cl_H) Fractional bone formation rate (h-1) in rat as a function of Age in years (KP_{GU},V_{GU}) T-BRR= BRR * PART C-BRR= BRR * (1-PART) (Q,) 4). BFR = FBFR * V_{bone} = BRR Where T = Trabecular, C = Cartical and PART = 0.7 PART = fraction of total bone formation assigned to trabecular bone, based on its relative metabolic activity, trabad flow any face area. The factor STMONT in 1.1 and 2.1 scales bone formation rate into a intercompartmental clearance for Str 1st order abs Kidney (Q,) Bone formation rate (**BFR**) in (L/h), where $V_{bane} = total bone volume...$..is equal to Bone resorption rate (**BRR**) in the mature rat where there is no (or negligible) net bone growth(KP_K , V_K , Cl_p) Dose Fig. 1: Model Schemati

3. Modelling Dataset and Empirical POP-PK Plasma Forcing function

- PBPK model development focussed on a plasma and bone exposure dataset from a study in the female ovariectomised (OVX) rat model for post menopausal osteoporosis.
- Rats were dosed with PO Strontium Ranelate at 250 mg/kg, QD for 6 months followed by a wash out period of a further 6 months. 3 to 4 plasma samples were taken per rat over the timecourse, spread across the animals in the study design to allow a composite plasma profile to be constructed over the 12-month study period with terminal sampling of bone tissue from three sites (vertebrae, femur and tibia). The study also included a satellite IV PK study with plasma sampling over a 2 day time
- For open loop PBPK modelling of the OVX data, a hierarchical, POP-PK, 3-compartment empirical model for use as a forcing function was fitted to the plasma data using a Bayesian approach in WinBUGS^[4] with ninformative priors. PO data was analysed simultaneously with satellite IV data.
- Diagnostic VPCs etc. (Fig. 2a, 2b and 3.) indicate an acceptable modelled fit to the PLASMA data and ption of interanimal variability. Final population mean parameter estimates, %CVs of these estimates (%CV[param.est]), and parameter interindividual variabilities (expressed as %CV[IIV.est]) are given in Table 1:

5. Conclusions and future work/applications

The PBPK model successfully describes the bone osure of Strontium in the OVX rat in a physiologically rationalized manner, and in keeping with the Strontium's bone seeking nature.

The model has the potential for future use in ing the PK-PD of Strontium and/or other bone seeking agents and for scaling to model human bo

4. Open loop POP-PK implementation

- Initial PBPK model development used a nonlinear regression approach, treating the OVX rat data as a naïve pool. Adequate performance was demonstrated in both open and closed loop configurations.
- For a POP-PK implem entation of the model, the open loop configuration wa individual animal's predicted PK parameters (from the empirical POP-PK plasma fitting) used as the forcing function for each individual rat's bone exposure. Only 1 bone tissue timepoint is available per al (due to the destructive nature of sampling). This removes the ability to partition interindividual and residual error in the hierarchical POP-PK model. The method of Hing et al. $\ensuremath{^{[5]}}$ (where the residual error component was fixed) was used to allow estimation of a pseudo-interindividual variability for the PBPK parameters being estimated.
- Bone tissue samples do not differentiate cortical and trabecular bone sub-types. Therefore the modelled sum of the cortical and trabecular bone compartments was fitted to the average bone exposure from the three sampling sites.
- Analysis was carried out in WinBUGS using uninformative priors.
- Diagnostic VPCs* etc. (Fig. 4. and 5.) indicate an acceptable modelled fit to the BONE data and description of interanimal variability. Final population mean parameter estimates etc. in Table 2.

6. <u>References</u>

- Betremences
 Nestorov, I.A., et al., Lumping of whole-body physiologically bosted fracture in women with postmenopousal osteoporosis. N Engl J Med, 2004.
 Nestorov, I.A., et al., Lumping of whole-body physiologically bosted pharmacokinetic models. I Pharmacokinet Biopharm, 1998. 26(1): p. 21-6.
 Linn, D.J., et al., VieiNBeer, A Boyesian modeling or movier pooled data analysis preferr 863-81.
 Hing, I.P., et al., kinised effects: modeling or noive pooled data analysis preferr etc.__IPP, 2001. 28(2): p. 193-210.

